Spatial variation in membrane excitability modulated by 4-AP-sensitive K+ channels in the axons of the crayfish neuromuscular junction.
نویسنده
چکیده
Current-clamp recordings were made from the primary (1°) and secondary (2°) branching points (BPs) of axons at the crayfish neuromuscular junction. Action potential (AP) firing initiated by current injected at the 2° BP showed strong adaptation or high-frequency firing at threshold current, whereas AP firing frequency at the 1° BP exhibited a gradual rise with increasing current amplitude. The voltage threshold for AP (V(TH)) was higher at the 2° BP than the 1° BP. 4-Aminopyridine (4-AP) at 200 μM increased AP amplitude and duration at both BPs but reduced threshold current at the 2° BP more than at the 1° BP. This blocker lowered V(TH) at both BPs, but the difference between the BPs remained. Firing patterns evoked at the 2° BP became similar to those evoked at the 1° BP in 4-AP. Thus 4-AP-sensitive channels may be more concentrated in the distal axon and control AP initiation and firing patterns there. Orthodromic APs between the two BPs were also compared. There was no difference in AP amplitude between the two BPs, but AP half-width recorded at the 2° BP was longer than that at the 1° BP. AP duration at both BPs increased gradually, by ∼17%, during a 100-Hz, 500-ms train (in-train rise). Normalized AP half-widths revealed a smaller fractional in-train rise at the 2° BP. Thus, although distal APs were broader, AP duration there was under more stringent control than that of the proximal axon. 4-AP increased AP amplitude and duration of the entire orthodromic train and reduced the magnitude of the in-train rise in AP half-width at both BPs. However, this blocker did not uncover a clear difference between the two BPs. Thus 4-AP-sensitive channels concentrated in distal axon may be essential in preventing unintended firing and modulating AP waveform without interfering with orthodromic AP propagation.
منابع مشابه
Spatial gradient in TTX sensitivity of axons at the crayfish opener neuromuscular junction.
At the crayfish opener neuromuscular junction, axons branch repeatedly before synapsing onto muscle fibers as varicosities. Excitability of these axons was examined with two-electrode current clamp before and after partial block of Na(+) channels with 1 nM tetrodotoxin. 4-Aminopyridine (200 μM) was added to homogenize nonuniformity in K(+) channel density. The impact of tetrodotoxin was evaluat...
متن کاملSlowpoke Speeds Repolarization at Fly Synaptic Terminals
Voltage-sensitive K channels speed membrane repolarization, thus narrowing action potential (AP) waveforms. The spike waveform at synaptic terminals strongly influences the kinetics of neurotransmitter release. Because recording APs at synaptic terminals is difficult, however, researchers typically examine EPSPs to identify contributors to presynaptic waveform. For example, mutation of shaker, ...
متن کاملNa+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings ...
متن کاملEffects of Buthus eupeus Venom on Neuromuscular Transmission on Striated Muscle In Vitro
In this study, effects of Buthus eupeus venom on chick biventer cervices nerve-muscle preparation were investigated by twitch tension method. The venom, at 1.3 ?g/ml, increased contractile responses in indirect stimulations. These effects were milder in direct muscle stimulations. It also caused significant enhancement in postjunctional sensitivity as assessed by responses to exogenous acetylch...
متن کاملMonitoring membrane excitability in Drosophila expressing modified shaker constructs.
The Drosophila neuromuscular junction (NMJ) ranks as one of the preeminent model systems for studying synaptic development, function, and plasticity. This protocol describes the use of the two-electrode voltage clamp (TEVC) to examine potassium (K(+)) currents mediated by voltage-gated ion channels, and gives several genetic and pharmacological methods that are used to study the currents. Droso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 107 10 شماره
صفحات -
تاریخ انتشار 2012